Fabrication and Analysis of Deep Submicron Strained - Si N - MOSFET ’ s

نویسندگان

  • Judy L. Hoyt
  • James F. Gibbons
چکیده

Deep submicron strained-Si n-MOSFET’s were fabricated on strained Si/relaxed Si0 8Ge0 2 heterostructures. Epitaxial layer structures were designed to yield well-matched channel doping profiles after processing, allowing comparison of strained and unstrained Si surface channel devices. In spite of the high substrate doping and high vertical fields, the MOSFET mobility of the strained-Si devices is enhanced by 75% compared to that of the unstrained-Si control devices and the state-of-the-art universal MOSFET mobility. Although the strained and unstrained-Si MOSFET’s exhibit very similar short-channel effects, the intrinsic transconductance of the strained Si devices is enhanced by roughly 60% for the entire channel length range investigated (1 to 0.1 m) when self-heating is reduced by an ac measurement technique. Comparison of the measured transconductance to hydrodynamic device simulations indicates that in addition to the increased low-field mobility, improved high-field transport in strained Si is necessary to explain the observed performance improvement. Reduced carrier-phonon scattering for electrons with average energies less than a few hundred meV accounts for the enhanced high-field electron transport in strained Si. Since strained Si provides device performance enhancements through changes in material properties rather than changes in device geometry and doping, strained Si is a promising candidate for improving the performance of Si CMOS technology without compromising the control of short channel effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion and Activation of Arsenic in Silicon Germanium Alloys

properties as a n-type dopant in Silicon Germanium (SiGe), to enable the fabrication of a wide range of devices. With the recent success of the strained Si MOSFET, new markets are expected to be developed based upon strained Si/relaxed SiGe CMOS circuits. An understanding of n-type dopant diffusion in SiGe, specifically the formation of the source/drain regions in the NMOS and the n-body region...

متن کامل

A Simple General-purpose I-V Model for All Operating Modes of Deep Submicron MOSFETs

A simple general-purpose I-V model for all operating modes of deep-submicron MOSFETs is presented. Considering the most dominant short channel effects with simple equations including few extra parameters, a reasonable trade-off between simplicity and accuracy is established. To further improve the accuracy, model parameters are optimized over various channel widths and full range of operating v...

متن کامل

Relaxation of Acceptance Limits (RAL): A Global Approach for Parametric Yield Control of 0.1μm Deep Submicron MOSFET Devices

An alternative method to fixed quality acceptance limits for in-line yield control is proposed. Our study is based on a sensitivity analysis, which has revealed that conventional parametric yield-control techniques using fixed in-line acceptance (tolerance) limits, as traditionally used in semiconductor manufacturing, are not efficient in deep submicron-size devices.

متن کامل

Improving Strained-Si on Si1 xGex Deep Submicron MOSFETs Performance by Means of a Stepped Doping Profile

We have made use of a stepped doping profile to improve the performance of strained-Si ultra-short MOSFETs. Electron mobility curves are calculated by a Monte Carlo simulator including electron quantization and Coulomb scattering, in addition to phonon and surface roughness scattering. In the first part of the paper, the effect of Coulomb scattering due to both interface charges and bulk impuri...

متن کامل

An Analytical Model for the Electron Velocity Overshoot Effects in Strained-Si/sub x/ on Si/sub x/Ge - Electron Devices, IEEE Transactions on

We have quantitatively described the transconductance improvement that can be obtained in deep submicron strained-Si on SixGe1 x MOSFET’s with respect to conventional Si ones due to velocity overshoot effects. We have done so making use of a Monte Carlo simulator and a recently developed transconductance analytical model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000